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研究速報

1．はじめに
本研究では、カーテンの断熱性や吸放湿性が、カーテ
ンと窓ガラスの間の空間（以後、窓部と呼びます）の温
湿度や風速に与える影響を明らかにし、冬季における窓
ガラス面の結露水量がどのように変化するかを予測する
ことを目的にしています。
窓ガラス面に生じる結露水量は、窓部の熱収支、窓部
の水分収支、結露による凝縮潜熱を考慮した窓ガラス面
の熱収支から、式（1）～（3）で考えます。

ここに、 Sw：窓ガラスの面積（m2）、Sc：カーテンの面積（m2）、
αc：窓部の対流熱伝達率（W/ m2･K）、αr：窓部の放
射熱伝達率（W/ m2･K）、αʼ：窓部の湿気伝達率（kg/
m2･s･（kg/kgʼ））、Ti：室内側空気温度（K）、Tw：窓
部空気温度（K）、Tg：窓ガラス室内側表面温度（K）、
Tgo：窓ガラス室外側表面温度（K）、Xi：室内側空気
絶対湿度（kg/kgʻ）、Xw：窓部空気絶対湿度（kg/kgʻ）、
Xg：窓ガラス面の絶対湿度（kg/kgʻ）、Q：窓部の換気
量（m3/h）、L： 水蒸気の凝縮潜熱（＝2500.3 kJ/
kg）、σ：ステファンボルツマン定数= 5.67 ×10- 
W/（m2 ·K4）、ec：カーテンの放射率、eg：ガラスの
放射率、λg：窓ガラスの熱伝導率（W/ｍK）、d：窓
ガラスの厚さ（ｍ）

これらのうち、実験などで直接測定できないファク
ターが、窓部の対流熱伝達率αc、窓部の湿気伝達率αʼ、
窓部の換気量Qです。対流熱伝達率は、ガラスを通過
する熱伝達式を用いて、式（4）より同定します。湿気
伝達率は式（5）によるルイスの関係から計算します。
湿気伝達率特定に必要なルイス数については既報1）で検
討を行い、結露実験時のルイス数を特定することができ
ました。

ここに、 q：窓ガラスを通過する熱量、Le：ルイス数（-）、
Cp：空気の定圧比熱（＝1.006kJ/（kg･K））
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ここに、q：窓ガラスを通過する熱量、Le：ルイス数（-）、Cp：
空気の定圧比熱（＝1.006kJ/(kg･K)） 

 

 換気量については既報 2)､3)で窓部風速を実測しました

が、風速測定位置が限定的であること、端部の詳細な風速

測定が困難であることから、CFD（Computational Fluid 
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 窓部に生じる気流は、窓ガラスからの冷放射による自

然対流ですが、CFD 解析で自然対流場を扱った例は少な

く、カーテンと窓ガラスの間の空間についての前例はあ

りません。そこでカーテンと窓ガラスを平行平板と捉え、

鉛直平行平板の自然対流に関する藤井らの研究 4)を CFD
で再現して、自然対流を CFD で検討することの有効性を

確認することにしました。本報ではその結果について報

告します。 
 
2．藤井らの実験概要 4) 

藤井らは、5 枚の平板で構成される鉛直平板群から空気

への自然対流に関する実験を行っています。図-1 に実験

装置を示します。それぞれの平板には面ヒータが内蔵さ

れており、平板群は上下が解放されたアクリル板で囲ま

れた空間に設置されています。ヒータの発熱量と平板間

隔を表-1 に示す条件として、平板表面温度、平板間の風

速などを測定しています。 
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及ぼす影響に関する研究　その1：カーテンと窓面の間の温
度と風速の検討：日本建築学会学術講演梗概集（関東），
pp.931-932，2020年9月
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面の間の気流の可視化：日本建築学会学術講演梗概集（東
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最小格子は1～5mmとしました。図-2にモデルを示し
ます。
乱流モデルは高い精度の解が期待できる空間平均モデ
ルであるLESもありますが、計算容量を考慮してRANS

モデルを使用することとしました。藤井らの実験から得
られるレイノルズ数は、代表長さを平板高さ（285mm）
とすると約4000です。一般にレイノルズ数が4000以
上で乱流と言われていますが、本実験では遷移領域で
あった可能性もあります。そこで乱流モデルとして、最
も適用例が多い標準k-εモデルと、壁面近傍での減衰を
考慮した低レイノルズ数モデルであるLaunder-Sharma

モデル（低Re）を選択することとしました。

4．解析結果
5枚の平板のうち中央に位置する平板表面の温度分布

の解析結果を図-3に示します。k-εモデルでは下部から
上部へ段階的に温度が上昇しており、藤井らの実験と概
ね一致した結果が得られました。一方、低Reモデルで
は中央部付近の温度が最も高く、上部および下部で低温
度になる結果となり、実験結果との整合が得られません
でした。

2枚目と3枚目の平板の間の空間風速について、平板
間距離ごとにプロットし、藤井らの実験と比較したもの
を図-4に示します。平板間距離（平行平板の間隔）が
9.7mmおよび34.7mmでは概ね実験と解析で良い一致
がみられましたが、19.7mmでは両者の結果に乖離が
あります。全体の傾向として平板間距離の風速分布は、
平板近傍で風速が小さく、中央部で大きくなる傾向で、
実験と解析は一致していました。また、k-εモデルより
も低Reモデルのほうが平板近傍の風速解析値が小さく
なる傾向があり、これは壁面近傍の減衰が考慮された結
果であることがわかります。

5．おわりに
自然対流をCFDで検討することの有効性を確認する

ために、過去文献の実験例をk-εモデルと低Reモデル
を用いてCFD解析で再現しました。その結果、実験結
果と解析結果は、温度および風速で一部の不一致がみら
れましたが、風速分布など全体的な傾向が一致してお
り、CFD解析の有効性が確認できました。
今後は、メッシュ数の再検討や、LESモデルを用い
た解析も視野に入れ、検討を進めていく予定です。
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ドバンスドナレッジ研究所）を用い、定常解析を実施しま

した。平行平板の厚さ（2mm）を考慮し、平板間の最小

格子は 1～5mm としました。図-2 にモデルを示します。 
乱流モデルは高い精度の解が期待できる空間平均モデ

ルである LES もありますが、計算容量を考慮して RANS
モデルを使用することとしました。藤井らの実験から得

られるレイノルズ数は、代表長さを平板高さ（285mm）

とすると約 4000 です。一般にレイノルズ数が 4000 以上

で乱流と言われていますが、本実験では遷移領域であっ

た可能性もあります。そこで乱流モデルとして、最も適用

例が多い標準 k-ε モデルと、壁面近傍での減衰を考慮し

た低レイノルズ数モデルである Launder-Sharma モデル

（低 Re）を選択することとしました。 
 
4．解析結果 

5 枚の平板のうち中央に位置する平板表面の温度分布

の解析結果を図-3 に示します。k-ε モデルでは下部から

上部へ段階的に温度が上昇しており、藤井らの実験と概

ね一致した結果が得られました。一方、低 Re モデルでは

中央部付近の温度が最も高く、上部および下部で低温度

になる結果となり、実験結果との整合が得られませんで

した。 
2 枚目と 3 枚目の平板の間の空間風速について、平板

間距離ごとにプロットし、藤井らの実験と比較したもの

を図-4 に示します。平板間距離（平行平板の間隔）が

9.7mmおよび 34.7mmでは概ね実験と解析で良い一致が

みられましたが、19.7mm では両者の結果に乖離があり

ます。全体の傾向として平板間距離の風速分布は、平板近

傍で風速が小さく、中央部で大きくなる傾向で、実験と解

析は一致していました。また、k-ε モデルよりも低 Re モ

デルのほうが平板近傍の風速解析値が小さくなる傾向が

あり、これは壁面近傍の減衰が考慮された結果であるこ

とがわかります。 
 
5．おわりに 

自然対流を CFD で検討することの有効性を確認する

ために、過去文献の実験例を k-εモデルと低 Re モデルを

用いて CFD 解析で再現しました。その結果、実験結果と

解析結果は、温度および風速で一部の不一致がみられま

したが、風速分布など全体的な傾向が一致しており、CFD
解析の有効性が確認できました。 

今後は、メッシュ数の再検討や、LES モデルを用いた

解析も視野に入れ、検討を進めていく予定です。 
 

 
図-2 解析モデル 
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図-3 温度コンター図 
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