

1. はじめに

近年、低炭素社会の実現、国内の林産資源の有効活用 等を背景に、特に中大規模建築物における木材利用への 関心が高まっており、国内においても中高層の建築物が 木造や一部木造を用いたハイブリッド構造で建てられる 事例が増えてきている。一般的に耐震部材は、常時の鉛 直荷重を負担させないことで耐火被覆不要の「あらわ し」で用いることができる。構造材の木材を「あらわし」 で用いることで、耐火被覆の手間やコストを抑えられる ことに加え、利用者への室内の木質感や建築物での木材 利用のアピールにつながることなどから、鉄骨造と木質

図-1 構造イメージパース

耐震部材のハイブリッド構造は国内において木材を利用 した中大規模建築物の一つの潮流となっている。

筆者らは、図-1のようにCLT (Cross Laminated Timber:直交集成板)の垂れ壁を、ラーメン構造とし て鉄骨造に組み込んだ構法を開発し、(一財)日本建築 総合試験所の建築技術性能証明を取得した。この木質垂 れ壁は、地震時の水平力に対して垂れ壁端部接合部が モーメント抵抗することでラーメン構造の梁としての機 能を発揮するという機構を有する。また、木質垂れ壁に 常時の鉛直荷重を負担させないことで、木質垂れ壁を 「あらわし」で利用することが可能である。

本報告では、構法の概要、本構法の性能証明にあたっ て実施した垂れ壁接合部面内曲げ試験、単位接合部引張 要素試験、有限要素法解析について述べる。

2. 構法の概要

2.1 接合部の概要

接合部の概略図を図-2に示す。木質垂れ壁は幅方向 の中央部にコの字状のスリットを設け、コの字形の挿入 鋼板を挿入し、ドリフトピンによって接合する。一方、 鉄骨柱には溶接接合によりブラケットを取り付け、ブラ ケットと挿入鋼板を添え板と高力ボルトにより摩擦接合 し、木質部材からの地震時の曲げモーメントとせん断力 を伝達できるような納まりとする。大地震時にはドリフ トピン接合部と挿入鋼板のコの字の元端部が降伏して変 形能力を確保することを期待する。

*1	MIYAKE Akihiko	:株式会社熊谷組	技術本部	新技術創造センター	木材利用開発グループ
*2	KANNAN Takanori	:株式会社熊谷組	技術本部	技術研究所 防災技術	
*3	NAKAZATO Taisuke	:株式会社熊谷組	建築事業本	关部 建築技術統括部	建築構造技術部
*4	AOKI Hiroyuki	:株式会社熊谷組	建築事業本	关部 建築技術統括部	建築構造技術部

木質垂れ壁は地震時や暴風時に水平力を負担するが、 スラブや内外装材等の鉛直荷重は近傍に配置した鉄骨小 梁(床受け材)が負担するため、長期荷重は負担しない 構造とする。

図-2 接合部概略図

2.2 適用範囲

本構法の主な適用範囲を表-1に示す。

(1)	適用建築物	法第20条第1項第二号、第三号、第 四号の建物高さ60m以下の建築物
(2)	主要構造種別	鉄骨造
(3)	木質垂れ壁が取り付 く柱の構造種別	鉄骨造または、コンクリート充填鋼 管構造
(4)	柱スパン	6,400~9,200mm
(5)	木質垂れ壁の材料/	スギCLT-5-7/幅(CLT厚)210mm ×せい1.500mm、または1.050mm
	寸伝	×長さ4,800~6,600mm
(6)	¹⁾ 伝 ドリフトピンの長さ /本数/配置	×長さ4,800~6,600mm 205mm/せい1,500mmの場合55本、 せい1,050mmの場合39本 /実験仕様と同じ

表-1 本構法の主な適用範囲

3. 垂れ壁接合部面内曲げ試験

3.1 試験目的

本構法において、木質垂れ壁端部の接合部が地震時の 水平力を受けた際の挙動、荷重変形関係、破壊性状を確 認するため、木質垂れ壁端部からスパン中央部分までを 取り出し、接合部の面内曲げ試験を正負交番繰り返し載 荷方式で行った。

3.2 試験方法

図-3に試験概要図を示す。試験体のセットアップは、

図-3(a.1~2)のように木質垂れ壁接合部を90°回転さ せ、端部はブラケット治具を介して反力床に固定し、ス パンの中央部(地震力による逆対称曲げモーメントの反 曲点)を想定した位置を加力した。加力は油圧ジャッキ に取り付けられた支圧板によって垂れ壁の側面を押すこ とにより行った。支圧板の木材へのめり込みを防ぐた め、試験体と同幅の鋼板 (t×H=12×225mm) を試験 体の表裏に径8mm、長さ90mmの木ねじで固定した。 試験体は木質垂れ壁に設けたスリットにコの字形に加工 した鋼板を挿入し、図-3(b.1~2)に示す配置でドリフ トピンを打ち込んで製作した。ドリフトピンφ16mmに 対するCLT孔のクリアランスは0mm、挿入鋼板孔のク リアランスは+1mm、挿入鋼板t19mmに対するCLT スリットのクリアランスは+2mmに設定した。木質垂 れ壁と挿入鋼板の相対変位の計測のために8.9.10.11 番変位計を設置したほか、挿入鋼板のコの字元端部側面 に1.2番ひずみゲージを貼付した。

試験体の仕様の一覧を表-2に示す。C1-F~C3-F試 験体は本構法の基本仕様とし、性能のばらつきを確認す るため3体の試験を行った。C1-F~C3-F試験体の仕様 と比べ、C4-F試験体は部材長さを長くするため加力点 高さを変更している。C5-F試験体は木質垂れ壁せいを 1,050mmにした試験体であり、垂れ壁せいに合わせて ドリフトピン本数を減じている。表-3に実験で用いた CLTの諸元、表-4、表-5にそれぞれ別途実施した挿入 鋼板とドリフトピンの引張材料試験の結果を示す。

載荷方法は接合部回転角1/600, 1/450, 1/300, 1/200, 1/150, 1/100, 1/75, 1/50radの正負3回繰り返し後、 1/30radを正負各1回ずつ行い、1/15radに達するか最 大荷重の8割以下に低下するまで加力を行った。

接合部モーメントM、および接合部回転角 θ はそれぞ れ式(1)および式(2)により求めた。

$M = Q \cdot \left(L_Q - x_{RZ} \right)$	•••••	(1)
$\theta = \frac{(\delta_2 - \delta_4) - (\delta_1 - \delta_4)}{l_{DDM}}$	$(-\delta_3)$	(2)

ここに、M:接合部モーメント、Q:ジャッキに接続さ れたロードセルで計測したせん断力、 L_Q :木質垂れ壁端 部から加力点までの距離、 x_{RZ} :FEM解析における木質 垂れ壁端部から接合部不動点までの距離(5章参照)、 θ : 接合部回転角、 δ_i :i番変位計(図-3(a.1~2)参照)の変 位、 l_{DDM} :1番変位計と2番変位計の距離(せい1,500の 場合1,400、せい1,050の場合950、図-3(b.1~2)参照)。

計験仕力	加力点高さ 木質垂れ壁			挿入釒	岡板	ドリフトピン		
武职144名	L_Q [mm]	規格・種別	せい[mm]	厚み[mm]	規格・種別	厚み[mm]	規格・種別	本数[本]
C1-F								
C2-F	2,815	スギ S60-5-7	1,500	t210	SN400B	t19	SNR400B	55
C3-F								
C4-F	3,265	スギ S60-5-7	1,500	t210	SN400B	t19	SNR400B	55
C5-F	2,815	スギ S60-5-7	1,050	t210	SN400B	t19	SNR400B	39

表-2 試験体仕様の一覧

表-3 CLTの諸π

試験体名	密度 [kg/m ³]	含水率 [%]
C1-F	414	10.4
C2-F	408	10.8
C3-F	424	10.8
C4-F	473	11.3
C5-F	466	11.3

表-4 挿入鋼板の材料試験結果

試験体名	$\sigma_y [N/mm^2]$		$\sigma_{max} [N/mm^2]$		降伏ひずみ [µ]	
C1-F, C2-F, C3-F	297	(1.2%)	429	(0.5%)	1434	(0.6%)
C4-F, C5-F	296	(1.1%)	451	(0.3%)	1401	(0.9%)

※括弧内は変動係数

表-5 ドリフトピンの材料試験結果

試験体名	σ _y [N	J/mm ²]	σ _{max} [N/mm ²]		
C1-F, C2-F, C3-F	326	(0.9%)	459	(0.3%)	
C4-F, C5-F	325	(1.5%)	465	(1.1%)	

※括弧内は変動係数

3.3 特性值算出方法

各特性値の算出方法を以下に示す。

<u>接合部不動点位置 x_{RZ}</u>:制御回転角1/300radサイク ルの正側加力初回ピーク時点での各試験体の水平変位 (図-3(a)のδ5・δ6・δ7)を結んだ線の切片(水平変位が 0)となる点とし、CLT 端部からの距離を示す。

<u>回転剛性 K_{θ} </u>:制御回転角1/300radの正側加力と負側 加力の初回ピーク時の割線剛性の平均値とした ($\mathbf{2}$ -4)。

ドリフトピン接合部の降伏耐力 $_{DP}M_y$:最も変形が大き いドリフトピン接合部の変位量 δ_{FDP} が4章の単位接合部 引張要素試験の降伏変位の平均値2.65mm(表-8参照) に到達した時点での接合部モーメントについて、正側加 力と負側加力の平均値をドリフトピン接合部の降伏耐力 $_{DP}M_y$ とした。なお、最も変形が大きいドリフトピン接 合部は5章の解析から図-3(b)の赤い〇印で囲んだドリ フトピンと判断し、当該ドリフトピン接合部の変位量 δ_{FDP} は式(3)より算出した。

$$\delta_{FDP} = \frac{1}{2} \left(\sqrt{\left(\frac{l_{C-DP}}{l_{C-DM}} \cdot \delta_{8}\right)^{2} + \delta_{10}^{2}} + \frac{1}{\left(\frac{l_{C-DP}}{l_{C-DM}} \cdot \delta_{9}\right)^{2} + \delta_{11}^{2}} \right)$$
(3)

ここに、 l_{C-DP} :木質垂れ壁の材軸と図-3(b)の赤い〇 印で囲んだドリフトピンの距離、 l_{C-DM} :材軸と8,9番 変位計(図-3(b)参照)の距離、 δ_8 , δ_9 :8,9番変位計の 変位(CLTと挿入鋼板の鉛直方向の相対変位)、 δ_{10} , δ_{11} :10,11番変位計(図-3(b)参照)の変位(CLTと挿入 鋼板の水平方向の相対変位)。ここで、8,9番変位計は 挿入鋼板側に変位計を設置し、CLT側に変位計に測定 用のターゲットを設置して相対変位を測定した。10, 11番変位計は挿入鋼板側に変位計を設置し、CLT側に 変位計の先を直接当てることで相対変位を測定した。

<u>挿入鋼板の降伏耐力_{PL}M_y</u>:挿入鋼板のコの字形の元端 部に貼付したひずみゲージ(ε1, ε2、図-3(b)参照)がそ れぞれの挿入鋼板の引張降伏ひずみ値(表-4参照)に到 達した時点での接合部モーメントについて、正側加力と 負側加力の平均値を挿入鋼板の降伏耐力_{PL}M_yとした。

<u>最大耐力M_{max}</u>:試験終了時までの正側加力における 接合部モーメントの最大値を最大耐力M_{max}とした。

<u>終局耐力 M_u </u>: 図-4に示すように、接合部回転角 θ =1/50radまでの範囲内で、回転剛性 K_θ を第一勾配とし モーメントが M_u である完全弾塑性モデルの台形の面積 が、実験の接合部モーメント一接合部回転角関係とX軸 とで囲む面積と等価となるように定めたモーメント M_u について、正側加力と負側加力の平均値を終局耐力とし た。ここで、完全弾塑性モデルの第一折れ点の接合部回 転角を θ_v 、終点の接合部回転角を θ_u とした。

3.4 試験結果

図-5(a)にC1-F~C3-F試験体、図-5(b)にC4-F試 験体、図-5(c)にC5-F試験体の試験より得られた接合 部モーメントM-接合部回転角 θ 関係を示す。図中の× 印は最も応力の大きいドリフトピン接合部が降伏した時 $点_{DP}M_y$ 、〇印は挿入鋼板のコの字形の元端部が降伏し た時 $点_{PL}M_y$ を示す。また、**表**-6に試験から得られた特 性値の一覧を示す。

1/50radまでの範囲では、各試験体で耐力の差異は あるものの、接合部モーメント – 回転角関係は概ね同様 の傾向を示した。表-6に示すように、全試験体に共通 して接合部が終局耐力に達する以前に、ドリフトピン接 合部および、挿入鋼板のコの字の元端部分がともに降伏 していることがわかる。

写真-1にC1-F試験体の解体後の状況を示す。ドリフ トピンは「へ」の字、または「ひ」の字に変形し、ヒンジ を1ヶ所または3ヶ所に形成していることがわかった。 また、ドリフトピンの変形状態は、写真-1(a.1)の赤枠 あたりのものが大きく、青枠あたりのものが小さく、位 置による変形の大小が明瞭に見られた。これは、接合部 不動点からドリフトピンまでの距離の差に伴う各ドリフ トピンに生じる応力の大小によるものだと考えられる。 挿入鋼板は写真-1(b.1~2)に示すようにドリフトピン 接合部の応力作用方向に変形していた。また、コの字形 の元端部の黒皮が剥げ、元端部を起点に残留変形が生じ ていることを確認した。これらのことから、ドリフトピ ン接合部とコの字形の元端部付近で挿入鋼板が降伏して いることが試験体の状況からも確認できた。

	回転剛性	接合部 不動点	降伏耐力		最大耐力	終局	耐力
	V		$_{DP}M_y$ [kN·m]	${}_{PL}M_y \ [{ m kN}{f \cdot}{ m m}]$	$M_{ m max}$ [kN·m]	N [kN	$[\mathbf{f}_u]$
	Λ _θ [kN∙m/rad]	X _{RZ} [mm]	$_{DP} heta_y$ $[imes 10^{-3} \mathrm{rad}]$	$_{PL} heta_{\scriptscriptstyle Y} \ [imes 10^{-3} { m rad}]$	$ heta_{ m max}$ [×10 ⁻³ rad]	$ heta_{v}$ [×10 ⁻³ rad]	θ_u [×10 ⁻³ rad]
C1 F	201 620	107	847	930	1,411	1,1	.27
CI-r	201,620 107	107	4.7	5.5	47.7	5.7	20.0
C2 F	204,578 136	196	829	953	1,407	1,1	.03
C2-r		150	4.5	6.1	49.3	5.3	20.0
C2 F	204 520	204 520 120	880	932	1,463	1,1	25
Сэ-г	204,529	150	5.0	5.5	48.4	5.5	20.0
C4-E	001 000	019	892	993	1,265	1,0	70
04-1	221,300 213	213	4.6	6.2	33.0	4.8	20.0
CE-E	00.005	100	451	455	798	55	52
00-1	88,825 182	6.3	6.2	63.7	6.5	20.0	

表-6 試験より得られた特性値

(a.1) 解体後のドリフトピン

(a.2) 赤枠拡大

(b.1) 解体後の挿入鋼板

(b.2) 赤枠拡大

写真-1 垂れ壁端部接合部実大面内曲げ試験解体後の状況 (C1-F)

4. 単位接合部引張要素試験

4.1 試験目的

本構法は、CLTに鋼板挿入式で接合したドリフトピンが曲げ抵抗することで、所定の耐力、剛性、変形能力等が確保されるため、実際の接合部の剛性、耐力を予測する際に、ドリフトピン接合部の性能をよく把握することが重要である。一方、CLTは繊維方向と繊維直交方向が混在するラミナ構成となるため、ドリフトピン接合部の剛性や耐力算出における「木質構造設計基準・同解

説」に記載されている既存式¹⁾を適用することができな い。さらに、ドリフトピンからの荷重作用方向とCLT の強軸方向のなす角度θは、ドリフトピンの配置された 位置により異なるため、荷重作用角度による影響も把握 する必要がある。

そこで、ドリフトピン単位接合部の性能および荷重作 用角度による影響の確認を目的とし、ドリフトピン単位 接合部の引張試験を行った。

4.2 試験体概要

試験体は図-6に示すようにCLTを4つの荷重作用角 度に対して幅300mmに切り出して作製した。試験体は Cn-Eθ(n=1,2,3:マザーボードの番号、θ=0,30,60, 90:CLTの強軸方向に対する荷重作用角度)と呼称す る。挿入鋼板はSN400B、ドリフトピンはSNR400B とし、各2本配置とした。ドリフトピンと挿入鋼板の機 械的性質は表-7に示す。試験体数は4つの角度ごとに 各3体とし、各マザーボードから1体ずつ切り出した。3 章と同様に、ドリフトピンに対するCLT孔のクリアラン スは0mm、挿入鋼板孔のクリアランスは+1mm、挿入 鋼板に対するCLTスリットのクリアランスは+2mmに 設定した。

4.3 試験方法

図-7に載荷図を示す。載荷は引張用と圧縮用の 1,000kNセンターホールジャッキにより加力した。軸 方向力は各ジャッキに接続された圧力交換器で計測し た。変位は挿入鋼板と木材の相対変位を表裏2ヶ所で計 測し、その平均値で評価とした。載荷は引張側を正と し、正負3回繰り返しとした。 $\theta=0^\circ$ で実施した予備試 験の降伏変位 $\delta_{pt}=1.55$ mmを基準に、 $\delta_{pt}\times 1/2$, 1, 2, 4, 6, 8, 12, 16の繰り返し変位を与えたのち、荷重が最 大荷重の0.8倍まで低下するか、変位が30mmに達す るまで行った。

降伏耐力 P_y は、文献2)の方法に基づき算出した。また、 第一折れ点を点 (δ_y , P_y)、第二折れ点を点 (P_{max} , δ_{max}) とするトリリニアモデルを作成し、初期剛性 K_1 と二次 剛性 K_2 を下式により求めた。

$$K_1 = \frac{P_y}{\delta_y}$$
 (4)

$$K_2 = \frac{P_{\max} - P_y}{\delta_{\max} - \delta_y} \tag{5}$$

ここに、K₁:単位接合部の初期剛性 [kN/mm]、K₂: 単位接合部の二次剛性 [kN/mm]。

4.4 試験結果

図-8に角度ごとのドリフトピン1本あたりの荷重 – 変形関係を、表-8に試験によって得られた特性値の平 均値(*θ*=0, 30, 60, 90は3体分の平均値、ALLは全12 体分の平均値)を示す。

図-8の赤線は各仕様3体のトリリニアモデルの平均 を示している。

写真-2に試験体の解体後の写真を示す。試験後のド リフトピンを取り出し、曲げヒンジの箇所数が0ヶ所の ものを降伏モードⅠ、1ヶ所のもの(「へ」の字状の変 形)を降伏モードⅢ、3ヶ所のもの(「ひ」の字状の変形) を降伏モードⅣと分類した。

接合部剛性、接合部耐力ともに荷重作用角度 θ による 明瞭な差異が見られなかった。

図-6 単位接合部引張要素試験体概要図

表-7 試験に用いた鋼材の機械的性質

材料	$\sigma_{\rm y} [{\rm N/mm}^2]$		$\sigma_{\rm max}$ [N/mm ²]		
ドリフトピン	326	(0.9%)	459	(0.3%)	
挿入鋼板	312	(2.0%)	431	(0.4%)	
※括弧内は変動係数					

表-8 試験によって得られた特性値の平均値

荷重作用 角度 θ	初期剛性 K_1	二次剛性 <i>K</i> 2	降伏耐力 P _y [kN]	最大耐力 P _{max} [kN]	Mode
[deg]	[kN/mm]	[kN/mm]	降伏変位	P _{max} 時変位	
_			δ_{y} [mm]	δ_{\max} [mm]	
0	11.3	0.717	31.6	47.0	WWW
0	11.5	0.717	2.79	24.30	10,10,10
30	0.6	0.701	29.4	44.9	N/ N/ N/
30	9.0	0.791	3.05	22.66	10,10,10
60	14.2	0.660	31.4	46.3	N/N/N/
00	14.2	0.000	2.21	24.79	10,10,10
00	12.7	0.506	32.6	45.7	m m w
90	12.7	0.590	2.56	24.42	ш,ш,1v
ATT 11.9	0.684	31.3	46.0		
ALL	11.0	0.084	2.65	24.04	-

θ=0° *θ*=60°写真-2 単位接合部引張要素試験解体後の状況

5. 有限要素法解析

5.1 解析目的

3章の垂れ壁端部接合部実大曲げ試験を対象に、有限 要素法により各特性値の推定を行い、試験結果と比較を 行う。ここで、解析に用いたドリフトピン単位接合部の 性能については4章の試験、挿入鋼板の材料強度につい ては3章の材料試験により実測した値を採用した。

5.2 解析モデル

解析モデルの諸元を表-9に、モデルの概要を図-9に示 す。解析には、MIDAS iGen Ver.900 R2xを用いた。 CLTの剛性は文献3)による。鋼板挿入ドリフトピン単位 接合部はMSS (Multiple Shear Spring;分割数n=4) によるトリリニアモデルとした。MSSの各せん断ばねの モデルを図-10に示す。せん断ばねの剛性 K_1 、 K_2 と降伏 荷重p1、p2は、文献4)を参考に下式により求めた。

$$k_1 = \frac{K_1}{\sum_{i=1}^n \sin^2 \frac{1}{n} \pi}$$
(6)

$$k_2 = \frac{K_2}{\sum_{i=1}^n \sin^2 \frac{1}{n} \pi}$$
 (7)

$$p_1 = \frac{P_y}{\sum_{i=0}^{n-1} \sin \frac{1}{n} \pi}$$
 (8)

ここに、K₁: MSSの各せん断ばねの初期剛性 [kN/mm]、 K₂: MSSの各せん断ばねの二次剛性 [kN/mm]、P₁: MSSの各せん断ばねの第一折れ点の降伏荷重 [kN]、 P₂: MSSの各せん断ばねの第二折れ点の降伏荷重 [kN]、 K₁: 単位接合部の初期剛性 [kN/mm]、K₂: 単位接合部 の二次剛性 [kN/mm]、P_y: 単位接合部の降伏耐力 [kN]、 P_{max}: 単位接合部の最大耐力 [kN]。

単位接合部の各特性値は、4章の試験結果より、とも に角度による明確な差異は見られなかったことに加え、 計算の簡便性を鑑み、角度依存性がないものとして扱う こととし、全12体の試験結果の平均値(表-8の数値を 参照)を採用した。

挿入鋼板元端部は図-11のようなトリリニア型の復元 力特性を持つ弾塑性回転ばねとした。初期剛性はコの字 形プレートの弾性解析よりせい1,500mmの場合は K_0 = 136,000 kN·m/rad、 せい1,050mmの場合は K_0 = 129,000 kN·m/radとした。トリリニアモデルの第一 折れ点は降伏モーメント M_y に達する時点、第二折れ点 は全塑性モーメント M_p に達する時点とし、挿入鋼板の 降伏モーメント M_p と全塑性モーメント M_p を図-11の Area 1とArea 2の面積が等価となるように式(10)から (16)の計算により定めた。ここで、 M_y 、 M_p の算出にお いて、挿入鋼板の降伏応力度は2章に用いた挿入鋼板の 降伏応力度を採用した。

要素	要素種別	諸元
		$t=210 \text{ mm}, E_0=4,285 \text{ N/mm}^2,$
CLT	板要素	E_{90} =1,714 N/mm ² , G=500
		N/mm ²
ドリフトピン	MSS	K_1 =11,800 N/mm, K_2 =684N/mm,
接合部	(n = 4)	<i>Py</i> =31,300 N, <i>P</i> max=46,000 N
		<i>B</i> × <i>D</i> =19mm×340mm (H1,500)
	梁要素	$B \times D = 19 \text{mm} \times 265 \text{mm}$ (H1,050)
		$E = 205,000 \text{ N/mm}^2, v = 0.3$
挿入鋼板		(H1,500)
	弾塑性	K_0 =136,000 kN·m/rad, β =0.301
	回転バネ	(H1,050)
		$K_0=129,000 \text{ kN} \cdot \text{m/rad}, \beta=0.301$

表-9 解析モデル諸元

図-9 解析モデル(せい1,500mmのケース)

- $M_y = Z \cdot \sigma_y$ (10)
- $M_p = Z_p \cdot \sigma_y \qquad (11)$
- $M_i = M_y + (M_p M_y)i/m \qquad (12)$

 $K_i = I_i / I_0 \cdot K_0 \quad \dots \quad (15)$

ここに、*M_y*:降伏モーメント [kN·m]、*Z*:断面係数 [mm³]、*σ_y*:挿入鋼板の降伏応力度 (**表**-4参照) [N/mm²]、

図-10 MSSのせん断ばねのモデル

図-11 挿入鋼板元端部の回転ばね(H1,500の場合)

M_p: 全塑性モーメント [kN·m]、*Z_p*: 塑性断面係数 [mm³]、
 i: ステップ数、*m*: 分割数 (=10)、*M_i*: *i*ステップの曲げ
 モーメント [kN·m]、*x_i*: *i*ステップの非塑性化部せい
 [mm]、*D*: 鋼板のせい [mm]、*B*: 鋼板の幅 [mm]、*I_i*:
 *i*ステップの断面二次モーメント [mm⁴]、*K_i*: *i*ステップ
 の回転剛性 [kN·m/rad]、*θ_i*: *i*ステップの回転角 [rad]。
 荷重条件は、図-12 に解析条件に示すような条件を与

えた。荷重は実大実験と同様に、CLTの端部から加力 点高さL_Qの位置とし、その位置の節点を剛体の梁要素で 接続し、最上部の節点に節点荷重を与え、荷重増分解析 を行った。

5.3 解析結果

解析によって得られた各仕様の接合部モーメント-接 合部回転角関係をそれぞれ図-13に示す。図中の×印は 増分解析において最も応力の厳しいドリフトピン接合部 の変位量が降伏変位である2.65mmに達した時点を示 し、〇印は増分解析において挿入鋼板の元端部に設置し た回転バネが降伏した時点を示す。また、実験値と解析 値の比較をそれぞれ表-10に示す。表中の解析値の終局 耐力は、1/50rad時点までの荷重変形関係と面積等価 になるようにバイリニア置換した際の耐力とした。

図-13より、有限要素法解析によって得られた接合部 モーメント – 接合部回転角関係は実験値を良い精度で予 測できているといえる。また、表-10より、回転剛性お よび各耐力値についても概ね良い精度で一致した。

本報では、木質垂れ壁接合部が荷重を受けて回転変形 する際に材軸からの変位が生じない点を接合部不動点と

表-10 解析結果と試験結果の比較

(a)C1-F~C3-F 仕様

	$K_{ heta}$	$_{DP}M_y$	$_{PL}M_y$	M_u
	[kN•m/rad]	[kN∙m]	[kN∙m]	[kN∙m]
解析結果	198,400	764	946	1,150
実験値の 平均値	221,300	892	993	1,070
解析/実験	0.90	0.86	0.95	1.07

(b)C4-F 仕様

	K_{θ}	$_{DP}M_y$	$_{PL}M_y$	M_u
	[kN∙m/rad]	[kN∙m]	[kN∙m]	[kN∙m]
解析結果	202,716	785	917	1,169
実験値	203,576	852	934	1,120
解析/実験	1.00	0.92	0.98	1.04

(c)C5-F 仕様

	$K_{ heta}$	$_{DP}M_y$	$_{PL}M_y$	M_u
	[kN•m/rad]	[kN∙m]	[kN∙m]	[kN∙m]
解析結果	72,435	404	427	569
実験値	88,825	451	455	552
解析/実験	0.82	0.90	0.94	1.03

定義する。加力点から接合部不動点までの距離をモーメ ントアーム長として、接合部モーメントの計算に用い る。

図-14に1/300radサイクルの正側初回ピーク付近での 各試験体の水平変位の実験結果(図-3(a)のδ5・δ6・δ7) と、同じ荷重条件に対する増分解析結果を示す(この時 点で解析は弾性範囲内であった)。図-14より、接合部 不動点は試験結果と概ね一致することを確認した。

6. おわりに

本報では、CLTの垂れ壁を、ラーメン構造として鉄 骨造に組み込んだ「木質耐震垂れ壁構法」について紹介 し、所定の性能を検証するために実施した、垂れ壁接合 部面内曲げ試験、単位接合部引張要素試験、有限要素法 解析を報告した。

試験により本構法は所定の耐力と変形能力を確保して いることを確認した。また、有限要素法解析は、回転剛 性、各降伏耐力および、終局耐力を精度よく推定できる ことを確認した。

謝辞

本構法は、東京大学大学院農学生命科学研究科木質材 料学研究室と銘建工業株式会社との共同開発である。各 種試験や解析検討にあたり、東京大学大学院の稲山正弘 教授、村田龍馬氏、銘建工業株式会社の鳥羽展彰氏、車 田慎介氏にご協力を頂いた。関係各位に感謝の意を表す る。

【参考文献】

- 1) (一社) 日本建築学会:木質構造設計規準・同解説-許容応 力度・許容耐力設計法-, 2006.
- 2)(一社)日本ツーバイフォー建築協会:枠組壁工法構造計算 指針,2018.
- 3)(公財)日本住宅・木材技術センター:CLTを用いた建築物の設計施工マニュアル,2016.
- 4) (一社) 日本建築学会:免震構造設計指針, 2013.

【執筆者】

*1 三宅 朗彦 *2 (MIYAKE Akihiko) (KAM

*2 河南孝典 *3 中里太亮 (KANNAN Takanori)(NAKAZATO Taisuke)

*4 青木 浩幸 (AOKI Hiroyuki)