

1. はじめに

平成13年の芸予地震、平成15年の十勝沖地震、平成 17年の宮城県沖地震、平成23年の東北地方太平洋沖地 震などでは多数の建築物において天井が脱落し人的・物 的被害が多数発生した。これらの被害を契機に、平成 25年に国土交通省により国土交通省告示第771号~第 779号が公布され、「建築物における天井脱落対策に係 る技術基準の解説」¹⁾が発行された後、平成26年4月よ り特定天井に関する法適合が義務化された。

これを踏まえ、大規模施設を中心とした天井脱落対策 が進む中で、既存天井を撤去して新たに耐震天井を施工 する手法は既に各種の工法が開発されてきた。例えば、 新設する天井ボードに斜めブレースを直接固定する工法 は、剛な耐震天井を構築することにより特定天井の技術 基準に適合することができる²⁾。その一方で、既存天井 の耐震改修工事において、工期短縮・コスト削減、ある いは工事期間中の施設利用の観点から、既存天井を残置 したまま脱落対策を行う手法の開発が望まれてきた。

著者らは、既存天井を残置しながら工事を行い、地震 後の施設の機能維持を図ること、また、施工においては 施設を使いながらの工事を可能とすることを目的として、 既存天井を対象とした「グリッドサポート工法・フェイ ルサポート工法」を開発した。

本稿では、グリッドサポート工法・フェイルサポート 工法の概要とその適用条件、目標性能、および当工法の 有用性を確認する目的で行った各種試験結果について報 告する。なお、本稿で報告する「グリッドサポート工法・ フェイルサポート工法」は、一般財団法人日本建築総合 試験所の建築技術性能証明(GBRC 性能証明 第 16-25号)を取得している。

2. 技術の概要

2.1 構成

本稿で報告する既存天井の改修構工法には、グリッド サポート工法とフェイルサポート工法の2種類があり、 いずれも天井面下に格子状の鋼材を後付するものである。 2.1.1 グリッドサポート工法

本工法は図2-1に示すように、既存天井下面に格子状の 鋼材(以下、グリッドサポートと呼ぶ)を配置するもので ある。グリッドサポートには溝形鋼を用い、室内側からタ ッピングビスでグリッドサポート、天井ボード、野縁を貫 通して固定する。グリッドサポートの端部は、天井周囲に 配置された端部構造部材に接合金物でピン接合すること とし、地震時に生じる天井の慣性力をグリッドサポートに よって天井周囲の端部構造部材に伝達する。これによって、 天井面の変位を制御し、天井材の損傷・脱落を防止する ものであり、既存の一般天井向けの耐震補強工法である。 2.1.2 フェイルサポート工法

本工法は、図2-2に示すように、既存天井下面に格子 状に配置された鋼材(以下、サポート材と呼ぶ)と天井 全面に張り渡した落下防止ネットによる天井の落下防止 対策である。サポート材は、天井の短辺方向に配置する

^{*1} MASATOU Tomohiro:清水建設株式会社 プロポーザル・ソリューション推進室ecoBCP計画部

^{*2} SAKURABA Fumihiko:清水建設株式会社 設計本部 設計技術部 技術グループ 兼 技術研究所 安全安心技術センター 主任研究員

^{*3} MATSUBARA Masayoshi:清水建設株式会社 設計本部 設計技術部 防災グループ

^{*4} MOROHOSHI Reiko:清水建設株式会社 設計本部 設計技術部 防災グループ

図 2-1 グリッドサポート工法の構成

フェイルサポート(溝形鋼)と長辺方向に配置するつな ぎ材(フラットバー)で構成される。グリッドサポート と同様に、室内側からタッピングビスでサポート材、天 井落下防止ネット、天井ボード、野縁を貫通して固定す る。フェイルサポート、つなぎ材双方の端部は、天井周 囲に配置された端部構造部材に接合金物でピン接合する こととし、サポート材と天井落下防止ネットによって既 存天井の大規模な崩落のみならず、部分的な損傷による 天井小片の落下を防止することを目的としている。なお、 本工法は、既存の特定天井の落下防止対策を目的とする が、一般天井にも適用可能である。

2.2 適用条件

本構工法を適用する建築物は、構造耐力上主要な部分 が所定の耐震性能を有することを確認されたものとし、 改修の対象となる既存天井の条件は、以下の各項による。

- (1) 天井は軽量鉄骨下地にボードを直貼した吊り天井 とし、下地工法は原則として在来工法とする。
- (2) 天井形状は、一体として挙動すると想定される形状で、天井周囲に端部構造部材を配置できるものとする。
- (3) 天井面は概ね水平で、吊り長さは3m以下とし、原 則として段差がないものとする。
- (4) 劣化防止のための処置をしているか、または劣化の生じにくい環境下にあるものとする。

3. 構成材の力学性能

本工法で採用する構成材の力学性能を確認するために、 グリッドサポートの接合部および落下防止ネットの定着 部について耐力試験を行った。

3.1 サポート材の中間接合部の試験

3.1.1 試験目的

地震などによる天井の落下を想定し、天井下面に溝形 鋼を敷設することで天井の崩落を防止する工法において、 当該溝形鋼の継手の耐力を把握することを目的とした。

図 2-2 フェイルサポート工法の構成

3.1.2 試験体と試験方法

試験体を図3-1および図3-2に示す。試験体は□-40 ×40×3.2を□-33.6×36.8×3.2および□-33.6×45× 3.2を介してボルト4本で繋いだ継手部である。試験体数 はそれぞれ3体であり、G1~G3、F1~F3とする。各試 験体の溝形鋼は、平板(SGCC)から冷間プレス加工に より作成した。ボルトはM12(首下60全ネジボルト、 強度区分4.8)、皿ばねワッシャを用いた。G1~G3試験 体の外観を写真3-1、F1~F3試験体の外観を写真3-2に 示す。試験方法は、試験体に単調載荷の引張力を加え、 最大耐力を把握する。

3.1.3 試験結果

試験により得られた各試験体の最大荷重を表3-1および表3-2に示す。破壊状況を写真3-3および写真3-4に示す。試験体G1~G3では継手部内側の溝形鋼がへりあき破断した。F1~F3試験体では外側の溝形鋼のへりあき破断が先行して、最終的には端抜け破断した。

表3-1に示す試験体Gシリーズの試験結果(最大荷重 の平均値=72.6kN、標準偏差=0.02kN)より、終局耐 力(平均値-0.5×標準偏差)は72.6kNであり、グリッ ドサポート母材の短期許容引張耐力の2.1倍であった。 一方、表3-2に示す試験体Fシリーズの試験結果(最大 荷重の平均値=75.0kN、標準偏差=0.32kN)より、終 局耐力(平均値-0.5×標準偏差)は74.9kNであり、フ ェイルサポート母材の短期許容引張耐力の1.4倍であっ た。

3.2 天井落下防止ネット定着部の試験

3.2.1 試験目的

地震などによる天井の落下を想定し、天井下面に落下 防止ネットを敷設することで天井の崩落を防止する工法 において、当該落下防止ネットの定着部の耐力を把握す ることを目的とした。

3.2.2 試験体と試験方法

試験体を図3-3に示す。試験体は、天井落下防止ネッ

図 3-2 試験体 F1 ~ F3

写真 3-1 試験体 G1 ~ G3

写真 3-3 試験体 G1 ~ G3 の破壊状況

表 3-1 試験体 G1 ~ G3 最大荷重一覧

試験体名	最大荷重 (kN)
G1	72.60
G2	72.58
G3	72.61
平均	72.60

トとして難燃性高強度繊維素材ネット(協立工業株式会 社製)を1対ずつ用いて、試験体の中央部にネットの重 ね継手と定着部を形成したものである。使用する落下防 止ネットの諸元を以下に示す。

材 料:難燃性高強度繊維素材ネット「ベクトランフィックスネット」FS840(φ1.31mm 一目巾40mm)

破断強度:2440N/2本 (メーカーカタログ値による)

Fn:1m幅当たりの破断強度

 $F_n=(2440/2) \times (1,000 \text{ mm}/40 \text{ mm})=30,500 \text{ N/m}$

引張剛性: E_t=640kN/m「(社) 日本膜構造協会試験法 標準 膜材料弾性定数試験法 (MSAJ/M-02-1995)」に準じる。

ネットの長期・短期の許容引張り耐力は、表3-3に示す。

写真 3-2 試験体 F1 ~ F3

写真 3-4 試験体 F1 ~ F3 の破壊状況

表 3-2 試験体 F1 ~ F3 最大荷重一覧

試験体名	最大荷重 (kN)
F1	75.22
F2	75.19
F3	74.65
平均	75.02

1対の落下防止ネットの一端は、加力用治具(□-75 ×75×4.5+PL-250×100×6)に接合されている。落 下防止ネットの他端はケダー(写真3-5、3-6参照)が縫 製されており、試験体中央部で溝形鋼□-40×40×3.2 とフラットバーFB-40×3.2 (いずれもSGCC材)の間 に相互に挟み込まれて定着部を形成している。また、こ の定着部に沿って、JIS材の野縁を設置し、天井板を模 擬した幅303mmの石膏ボード(厚さ12.5mm×1枚)を フラットバー側に密着させ、 ϕ 5テクスビスを@303mm 間隔で野縁から溝形鋼まで貫通して固定している。試験 体は同じ仕様のものを3体製作した。試験体の外観を写 真3-7に示す。試験方法は、写真3-8に示すように、試験 体に単調載荷の引張力を加え、最大耐力を把握する。

図 3-3 試験体

写真 3-7 試験体外観

写真 3-8 試験状況

3.2.3 試験結果

試験により得られた各試験体の最大荷重を表3-4に示 す。最大荷重はネット幅700mmの試験体の計測値と、 ネット幅1mあたりに換算した値を示している。試験後 の破壊状況を写真3-9に示す。各試験体は、加力治具側 のネットが破断して最大荷重となったが、ケダーを重ね たフェイルサポート側の定着部では大きな損傷が見られ なかった。

試験結果より、ネット幅1mあたりの最大荷重の平均 値=10.83kN、最小値=10.22kNであり、終局耐力(最 大荷重の平均値-0.5×標準偏差)は10.56kNであった。

これより、ネット端部定着部の基準強度は、実験結果 よりFu=10(kN/m)とした。また、長期許容引張耐力 はFu/3とし、短期許容引張耐力は長期の2倍とした。

4. 構造安全性を検証するための実験

本工法の構造安全性を検証するために行った実験につ いて記述する。

4.1 天井加振実験(グリッドサポート工法)

加振実験では、既存天井を模擬する試験体を振動台上に設置し、強震動記録を入力して地震時の挙動を再現した。

表 3-3	ネッ	トの破断強度お。	よび長期・	·短期許容引張耐力
-------	----	----------	-------	-----------

材料名 破断強度Fn		長期許容引張耐力	短期許容引張耐力	
FS840	30.5	3.81	7.63	
上表の長	期許容引張耐力は	平成14年国土交通省	告示第666号第6に規定	

する膜材料の引張許容応力度の規定に準じてFn/8とし、短期許容引張耐力は長期の2倍としている。

	最大荷重実験值 (kN)				
試験体	計測値	幅1m当たりの			
		换异他			
No.1	7.74	11.05			
No.2	7.86	11.23			
No.3	7.16	10.22			
平均值	7.59	10.83			
標準偏差	0.37	0.54			
終局耐力	7.40	10.56			

表 3-4 最大荷重一覧

写真 3-6 ケダー(ネット縫製済み)

写真 3-9 試験後の破壊状況

4.1.1 加振実験前の要素試験

グリッドサポートと既存天井との接合部は、天井室内 側よりグリッドサポートをタッピングビスにて天井ボー ドを貫通して野縁に固定することとしているが、加振実 験の前に要素試験を別途行って、接合部の耐力を検討し た。要素試験の試験体は、**写真4-1**に示すように、内装 工事で汎用的に使用される4mmのタッピングビスを用 いて、グリッドサポートを模擬するサポート材(鋼製フ ラットバー t=3.2mm)側から天井ボード(石膏ボード t=9.5mmと岩綿吸音板t=9.5mm)を介して、一般材の 野縁を貫通させて作成した。要素試験では、皿ビスと鍋 ビスの2種類のビス形状を使用し、引張試験機を用いて、 野縁方向に加力した。

試験結果を表4-1、4-2に示す。皿ビスと鍋ビスでは、 鍋ビスの方が平均で1.4倍程度耐力が高く、また弾性的な 挙動を示す範囲も鍋ビスの方が大きいことが解った。なお、 終局耐力を最大荷重の平均値-0.5×標準偏差により算定 した結果は、皿ビスが831N、鍋ビスが1162Nであった。

要素試験の結果は、ビス1本あたりの地震時せん断力 に対して、皿ビスの終局耐力は3.4倍、鍋ビスの終局耐 力は4.8倍の余裕がある。従って、一般的な野縁のピッ

表 4-1 皿ビスの試験結果

チ@303mmに合わせて、グリッドサポート材を鍋ビス

で野縁に固定すれば、天井面の慣性力をグリッドサポー ト材に確実に伝達できると考えられる。

4.1.2 加振実験

(1) 試験体

加振実験では、振動台に加振用フレームを設置し、加振 用フレーム上部から既存天井を模した試験体を吊り下げた。 試験体の大きさは5.7m×5.0mで、試験体重量は730.5kgf 及びおもりを付加した817.8kgf、吊長さを1,500mmとし、 ブレース等の耐震部材は設置していない。また、既存天井 の野縁と野縁受け等の主材は一般材(非JIS材)とし、 JIS A 6517と同形状の一般材クリップ、ハンガーを用いて 試験体を製作した。本加振実験では、加振用フレームを既 存構造体と想定しているが、実験上の制約により端部構造 部材が加振用フレームの相対する2辺にしか設置できない ため、グリッドサポートを端部構造部材に緊結する方向(加 振用フレームの長手方向)を加振方向とした。

加振実験に用いる試験体を図4-1~図4-3に示す。試験 体①は図4-1に示すように、加振方向が野縁方向であり、 加振方向のグリッドサポート3本の両端が端部構造部材 に緊結されている。試験体②は図4-2に示すように、加 振方向が野縁直交方向であり、加振方向のグリッドサポ ート3本の両端が端部構造部材に緊結されている。試験 体③は図4-3に示すように、加振方向が野縁直交方向で あり、加振方向のグリッドサポートは中央1本の両端のみ が端部構造部材に緊結されている。試験体の全景を写真 4-2に示す。想定する建築物を、構造部材のスパン長さ 12m、グリッドサポートの取付間隔1.8mとすれば、サポ ート材1本当たりの天井支配面積が、12m×1.8m=21.6m²

写真 4-2 試験体全景

表 4-3 試験体の諸元

試験体面積	$5.7 \times 5.0 = 28.5 \text{m}^2$
試験体総重量	既存天井重量(ボード及び天井下地): 634.12kgf サポート材:3.38kgf/m ² ×28.5m ² =96.33kgf 天井試験体重量:634.12+96.33=730.5kgf なお、記号e以降は87.3kgfのおもりを付加し、 天井試験体重量:730.5+87.3=817.8kgf

となる。試験体①と②は、グリッドサポート材1本当たり の天井支配面積が28.5m²/3=9.7m²であるのに対して、試 験体③はグリッドサポート1本のみが端部構造部材に緊 結されるため、支配面積が28.5m²であり、想定に対して 28.5÷21.6=1.3倍となる。また、天井面の設計用地震力 は、水平動が2.2Gを想定しているが、加振実験では1.5 倍程度の安全率を考慮して、天井面の最大加速度が3.3G 相当の慣性力を目標とする。面積が28.5m²、単位面積重 量が20kgf/m²の天井に3.3Gの水平加速度が作用した時の 慣性力は28.5×20×3.3=1,881kgfとなる。これは、重量 730.5kgfの試験体では2.6G、おもりを付加した重量 817.8kgfの試験体で2.3Gの水平加速度が作用した時の慣 性力と等価である。

(2) 入力地震動

加振実験は、水平1方向+上下方向の同時加振とした。 入力地震動は、図4-4に示すエルセントロ波とし、水平 方向がNS成分、上下方向がUD成分を最大加速度で基 準化して用いた。なお、上下方向の最大加速度は水平方 向の1/2とした。

加振実験では、最大加速度が水平方向300gal、鉛直 方向150galの入力から開始して、徐々に入力加速度の レベルを上げ、振動台の能力限界に近い水平方向 1,500gal、鉛直方向750galまでの加振を行った。試験 体①、②の加振実験では、天井面の水平方向の応答加速 度2.6Gを目標としたが、目標に達しない場合は天井面 におもりを付加して応答加速度2.3Gを目標として実験 を行った。なお、試験体③の加振実験では、グリッドサ ポートの支配面積が想定の1.3倍であるため、応答加速 度は2.3G÷1.3=1.7Gを目標とした。

図 4-1 試験体①

図 4-2 試験体②

図 4-3 試験体③

表 4-4 試験体①の加振結果

記号	振動台 入力 加速度 (gal)	試験体 重量 (kgf)	天井面 目標 加速度 (G)	天井面 応答 加速度 (gal)	天井面と 加振フレ ームの相 対変位 (mm)	目視観察結果
а	H=300 V=150	730.5	2.6	H=516 V=542	0.3	損傷なし
b	H=900 V=300	730.5	2.6	H=1476 V=3080	1.0	損傷なし
с	H=1200 V=600	730.5	2.6	H=1898 V=2584	0.9	損傷なし
d	H=1500 V=750	730.5	2.6	H=2283 V=5586	1.8	サポート材および天井面に損傷なし 天井のクリップ外れ、ハンガー開き が生じる
е	H=1500 V=750	817.8	2.3	H=3350 V=5238	4.2	サポート材および天井面に損傷なし サポート材と天井の接合ビスに一部 ゆるみ

表 4-5 試験体②の加振結果

記号	振動台 入力 加速度 (gal)	試験体 重量 (kgf)	天井面 目標 加速度 (G)	天井面 応答 加速度 (gal)	天井面と 加振フレ ームの相 対変位 (mm)	目視観察結果
f	H=1000 V=300	817.8	2.3	H=1638 V=887	1.1	損傷なし
g	H=1500 V=450	817.8	2.3	H=2443 V=2241	1.9	損傷なし
h	H=1500 V=750	817.8	2.3	H=3049 V=4818	2.9	サポート材と天井の接合ビスに一部 ゆるみ 天井のクリップ外れ、ハンガー開き

表 4-6 試験体③の加振結果

記号	振動台 入力 加速度 (gal)	試験体 重量 (kgf)	天井面 目標 加速度 (G)	天井面 応答 加速度 (gal)	天井面と 加振フレ ームの相 対変位 (mm)	目視観察結果
i	H=1100 V=300	817.8	1.7	H=2218 V=1060	4.9	損傷なし

4.1.3 実験結果

試験体①~③の加振結果を表4-4~表4-6にそれぞれ 示す。試験体①では、おもりを付加した記号eの加振で は目標加速度2.3Gを上回った。このとき試験体は目視 では損傷が見られなかった。試験体②では、記号g、h の加振において、水平1,500galの入力に対して、天井面 応答加速度は2.3Gを上回り、この時、試験体はサポー ト材自身や接合部の損傷は生じなかった。試験体③では 記号iの加振において、入力加速度1,100galに対して天 井面応答加速度は目標の1.7Gを上回り、この時、試験 体の接合部に損傷は生じなかった。

4.1.4 実験結果の評価

試験体①~③において、いずれも目標加速度(試験体 ①と②は2.3G、試験体③では1.7G)を上回る加振を行 った結果、グリッドサポートが天井を安全に支持し、軽 微な補修で継続使用可能な程度の損傷にとどまることを 確認した。グリッドサポートと天井ボードの接合部では、 地震動の作用によってビスにゆるみを生じる可能性があ るため、施工後の一定期間後の定期点検時や大地震後の 緊急点検時に、接合ビスおよび周辺を検査して、必要に 応じて補修を実施する等の維持管理が必要と思われる。

4.2 天井落下実験(フェイルサポート工法)

実大の天井の全面落下実験を行い、フェイルサポート や中間支持材、ワイヤーなどの応力・変形を計測し、天 井落下防止機構としてフェイルサポート工法の設計・計 画に必要な衝撃係数等の数値を決定するためのデータを 取得した。

4.2.1 実験方法

天井下面に落下防止用のフェイルサポートとつなぎ材 を設置した天井の実物大試験体(幅3.64m×長さ10.7m) を製作し、ロードセルを介してフェイルサポートの両端 が支持された状態で、試験体を自由落下させ、フェイル サポートに生じる反力とたわみを計測するものである。

試験体は、図4-4に示すように、軽量鉄骨下地(一般材) に石膏ボード(厚さ12.5mm)1枚または2枚張りからな る在来工法天井であり、平面サイズは10.7m×3.64mで ある。試験体の製作は、実験架台の大梁上の□-100× 100材から吊るした吊りボルトにより野縁受(C-38×12 ×1.0)、野縁(C-25×19×2×0.4、C-50×19×2×0.4) を吊り、それに石膏ボードをビス打ちして行う。実験で は、井桁に組まれた支持フレームを揚重し、実験架台の 梁で天井および支持フレームを一旦支持する。次に吊り ボルトの吊り元の高ナットを外して、吊りボルトと吊り 元の接続を解除する。その後、電磁石にて支持フレーム 僅かに揚重して、支保工を外し、天井を支持フレームご と自由落下させる。各試験体の天井ボード枚数と中間支

図 4-4 実験架台と試験体

持の有無などを表4-7に示す。

試験体①は天井1枚張りで、試験体中央位置の2か所 において実験架台の梁から吊り下げたM16の全ネジボ ルトにより天井下面のフェイルサポートを中間支持する。 フェイルサポートの両端部は、試験体④を除き、ロード セルを介して実験架台の柱材と緊結される。試験体②は、 試験体①中央のM16全ネジボルトを撤去して、中間支 持無しとする。試験体③は、天井2枚張りで①と同様の 支持方法とする。試験体④は、フェイルサポートの左右 端部を実験架台の柱材に緊結するピン支持を解除し、当 該部分をワイヤーにて実験架台の梁から懸垂する。併せ て、試験体中央部のM16全ネジボルトもワイヤー吊り に組み替える。試験体5は、フェイルサポートの両端部 をロードセルを介して再び実験架台の柱材と緊結し、試 験体④の6ヶ所全てのワイヤーを撤去したものである。 実験における変位などの計測位置を図4-5に示す。計測 は、フェイルサポートの端部での張力をロードセル(L1 ~L4) で計測し、中間点の接触式変位計(DB1、DB2) または非接触式変位計(DS1、DS2、DC1、DC2、 DN1、DN2)により計測する。またM16全ネジボルト の吊材およびワイヤーの張力は、ストレインゲージ(GC1、 GC2、GS1、GS2、GN1、GN2) により歪を計測して 応力を算出する。張力、変位、ひずみ等の計測は、天井 落下後20~25秒程度経過して、計測データが安定する まで行う。

表 4-7 各試験体の構成と損傷状況

試験体	天井	支持方法	損傷状況の概要
1	1枚張り	中間支持有り	試験体は変形するものの、目視では 損傷は観察されなかった。
2	1枚張り	中間支持無し	試験体①に比べて、試験体②は大き く緩やかに変形したが、目視では損 傷は観察されなかった。
3	2枚張り	中間支持有り	中間支持部分で天井板の断面にひび 割れが観察された。継手部分でのボ ルトのずれが見られた。
(4)	2枚張り	ワイヤー吊り	ワイヤーによる中間支持部分で天井の 表面に達するひび割れが観察された。
5	2枚張り	中間支持無し	中間部分で天井の割れ、一部のビス のゆるみが観察された。継手部分で のボルトのずれが見られた。

4.2.2 実験結果

天井落下後の各試験体の損傷状況を表4-7に要約する。 フェイルサポートは、天井全面落下の衝撃荷重に耐えて、 脱落を生じることなく天井を安全に支持した。試験体は、 落下時の衝撃によって一部に天井ボードのひび割れやフ ェイルサポートの継手部のボルトのずれなどの損傷を生 じたが、人的被害や避難の支障に繋がるような大規模な 破損・落下は生じなかった。各試験体の最大張力や最大 たわみの実験結果と後述5.1.1に示す懸垂線理論式によ る計算結果を比較して表4-8~表4-12に示す。

中間支持のある天井は、無い天井に比べて、フェイルサ ポートの最大張力や天井の最大たわみが小さく、中間支持 材は天井の落下防止対策に有効であること明らかとなった。

表4-8~表4-12の懸垂線理論式による値は、静的な天 井荷重に対する計算値であるのに対し、実験結果は、天 井全面落下時の衝撃によって生じた計測値である。従っ て、理論式による値に対する実験結果の比は、天井全面 落下に伴う衝撃割増しを表していると考えられる。表 4-13は、表4-8~表4-12の実験結果/理論式の比を一覧 で示しており、これらの数値を下回らないように定めた 衝撃割増係数を表の最下段に示している。フェイルサポ ートの衝撃割増係数は、中間支持材無しの場合の張力が 2.0、たわみが3.0であるのに対して、中間支持材有りの 張力が1.0、たわみが2.5となっている。また、中間支持 材の鉛直支持力ならびにワイヤーの衝撃割増係数は、い ずれも3.0となっている。

	サポート材張力	中央支点反力	スパン中央たわみ
	(kN)	(kN)	(mm)
	L1:12.3255		DN1 :115.7794
	L2:11.7716	GC1:3.56288	DN2 :122.6642
実験結果	L3:11.5335	GC2:3.22916	DS1 :115.3399
	L4:11.8631	平均值:3.3960	DS2 :130.0984
	平均值:11.8734		平均值:120.9705
懸垂線理論式	17.81	1.37	56.7
実験結果/理論式	0.67	2.48	2.13

表 4-9 試験体②(天井ボード1枚で中間支持無し)

	サポート材張力	スパン中央たわみ
	(kN)	(mm)
	L1:46.8322	
	L2:43.8567	DC1:355.1019
実験結果	L3:38.6336	DC2:369.2744
	L4:41.6915	平均值:362.1882
	平均值:42.7535	
懸垂線理論式	28.26	142.9
実験結果/理論式	1.51	2.53

表 4-10 試験体③ (天井ボード 2 枚で中間支持あり)

\sim	サポート材張力	中央支点反力	スパン中央たわみ
	(kN)	(kN)	(mm)
	L1:21.3001		DN1:126.966
	L2:21.6480	GC1:5.84084	DN2:140.0226
実験結果	L3:21.4466	GC2:5.515363	DS1 :133.241
	L4:20.2930	平均值:5.6781	DS2 :137.1122
	平均值:21.1719		平均值:134.3355
懸垂線理論式	24.22	2.17	66.2
実験結果/理論式	0.87	2.62	2.03

表 4-11 試験体④ (天井ボード2枚でワイヤー掛け)

	端部ワイヤー張力	中央ワイヤー張力
	(kN)	(kN)
	GN1:3.1132	
	GN2:4.4122	GC1:5.0515
実験結果	GS1:4.0358	GC2:5.4632
	GS2:2.4155	平均值:5.2574
	平均值:2.7442	
計算值	1.084	2.168
実験結果/計算値	2.53	2.43

計算値=天井単位重量×ワイヤー1本当たりの支配面積

表 4-12 試験体⑤ (天井ボード2枚で中間支持無し)

	サポート材張力	スパン中央たわみ
	(kN)	(mm)
	L1:62.9755	
	L2:63.3783	DC1:449.1495
実験結果	L3:62.6276	DC2:469.3134
	L4:61.6571	平均值:459.2315
	平均值:62.6596	
懸垂線理論式	38.44	166.6
実験結果/理論式	1.63	2.76

(注) 各試験体の計測位置は図4-5参照

表 4-13 衝撃割増係数

\square	フェイルサポート 端部張力		中間支持	フェイルサポート たわみ		ワイヤー張力	
	中間支持 無し	中間支持 有り	力	中間支持 無し	中間支持 有り	端部	中央
実験結果 /理論式	1.51 ケース② 1.63 ケース⑤	0.67 ケース① 0.87 ケース③	$2.48 \\ r - \chi (1) \\ 2.62 \\ r - \chi (3)$	$\begin{array}{c} 2.53 \\ r-z_{(2)} \\ 2.76 \\ r-z_{(5)} \end{array}$	$\begin{array}{c} 2.13 \\ r - \chi (1) \\ 2.03 \\ r - \chi (3) \end{array}$	2.53 ケース④	2.43 ケース④
衝撃割増 係数	2.0	1.0	3.0	3.0	2.5	3.0	3.0

5. 設計法を検証するための解析

5.1 フェイルサポートの張力とたわみの算定 フェイルサポートの張力とたわみを数値解析的に算定 する。解析対象の天井は、4.2章の天井落下実験に用い た実大試験体であり、その諸元を表5-1に示す。

ケース名	天井重量	支点間距離 (m)	フェイルサポート1本	
(試験体名)	(N/m^2)	×スパン数	当たりの支配幅 (m)	
1	127.5	5.9m×2スパン (中間支持材有り)	1.82m	
2	127.5	11.79m×1スパン (中間支持材無し)	1.82m	
3	202.1	5.9m×2スパン (中間支持材有り)	1.82m	
5 202.1		11.79m×1スパン (中間支持材無し)	1.82m	
	·			

表 5-1 解析対象の天井

5.1.1 懸垂線理論による解析

懸垂線理論による解析は、等分布荷重qを受ける支点 間距離1のフェイルサポート1本あたりの張力を以下の ように算定する。まず、2分法等の反復解法を用いるこ とで、水平力Hを次式により求める。

$$2\frac{H}{q}\left(1-\frac{H}{EA}\right)\sinh \frac{ql}{2H} = l \qquad \cdot \cdot \cdot (1)$$

ここで、

q:フェイルサポート1本当たりの等分布荷重

 $q=_W \times b$

w:天井の単位面積重量

- E:フェイルサポートのヤング係数
- A:フェイルサポートの断面積
- 1:フェイルサポートの支点間距離

水平力*H*を用いて、フェイルサポートのたわみδお よび張力*P*を、次式により算定する。

$$\delta = y_{x=l/2} = \frac{H}{q} \left(\cosh \frac{ql}{2H} - 1 \right) \qquad \cdot \cdot \cdot (2)$$

$$P = H \cosh \frac{ql}{2H} \qquad \cdot \cdot \cdot (3)$$

また、フェイルサポートの端部支点に作用する鉛直力 Vは次式で与えられる。

$$V = \sqrt{P^2 - H^2} \qquad \cdot \cdot \cdot (4)$$

フェイルサポートの張力とたわみは、懸垂線理論を用

いれば反復計算により算定することができるが、膜張力 の略算式³⁾を用いれば、反復計算せずに算定することが できる。これは、支点間に張られた膜材料の支点間の膜 張力を求める略算法で、鉛直等分布荷重に対して、初期 状態でたわみが無い場合の水平力*H、*鉛直力*V、*張力*P、* たわみδはそれぞれ下式で算定される。

$$H = \sqrt[3]{\frac{E \times A \times q^2 \times l^2}{24}} \qquad \cdot \cdot (5)$$

$$V = ql / 2 \qquad \cdot \cdot \cdot (6)$$

$$P = \sqrt{H^2 + V^2} \qquad \cdot \cdot (7)$$

$$\delta = \sqrt[3]{\frac{3 \times q \times l^4}{64 \times E \times A}} \qquad \cdot \cdot \cdot (8)$$

懸垂線理論による解析と膜張力略算式による結果を比 較して表5-2に示す。4つの解析ケースの天井に対して、 フェイルサポートの張力とたわみは、懸垂線理論式と膜 張力略算式による計算結果がほぼ等しいことが明らかに なった。このことから、フェイルサポートの部材1本あ たりの張力とたわみは、懸垂線理論式である(2)式と(3) 式、または膜張力略算式である(7)式と(8)式を用 いて算定することとする。

表 5-2 懸垂線理論式と膜張力略算式の比較

<i>L</i> 7	端部張力P (kN)			中央たわみ δ (mm)			
9 - ^	①懸垂線式	②膜略算式	比 (②/①)	③懸垂線式	④膜略算式	比 (④/③)	
1	17.8	17.8	1.000	56.8	56.7	0.998	
2	28.3	28.2	1.000	142.9	142.8	0.999	
3	24.2	24.2	1.000	66.2	66.2	1.000	
5	38.4	38.4	1.000	166.6	166.5	0.999	

5.1.2 梁理論による解析

表5-1に示す解析対象の天井について、フェイルサポ ートの曲げ剛性(断面二次モーメントIy=5.72cm⁴)を 考慮した梁理論による解析を行い、曲げ剛性を考慮しな い懸垂線理論による結果と比較検討を行う。

梁理論による解析では、フェイルサポートは幾何学的非 線形性を考慮した梁要素でモデル化する。梁要素の長さ は40mmを基本とし、全長11.79mの節点数は297個である。 梁要素の諸元は□-40×40×3.2の数値を用いている。中 間支持材がある場合は、フェイルサポートにピン接合され た鉛直ばね(軸剛性1×10⁸N/m)により中間支持材をモデ ル化する。解析では梁要素のせん断変形は無視している。

ケース名	端部張力P (kN)			中央たわみ δ (mm)		
	①懸垂線式	②梁理論	比(②/①)	③懸垂線式	④梁理論	比(④/③)
2	28.3	27.6	0.975	142.9	142.4	0.997
5	38.4	37.7	0.982	166.6	166.1	0.997

表 5-3 懸垂線理論式と梁理論解析結果の比較 (中間支持材無し)

(1) 中間支持材が無い場合の解析結果

表5-3は、中間支持材が無い場合(ケース2とケース5) の懸垂線理論式と梁理論による解析結果を比較している。 同表から明らかなように、フェイルサポートの張力とた わみは、懸垂線理論式の方が梁理論よりもわずかに大き いが、両者は概ね良い対応を示している。また、フェイ ルサポートの材軸に沿ったたわみ分布を図5-1に示すが、 懸垂線理論式と梁理論によるたわみは殆ど差が見られず、 両者のたわみ分布が重なっている。以上から、中間支持 が無い場合のフェイルサポートの張力とたわみは、懸垂 線理論式の方が梁理論よりも計算結果が僅かに大きいも のの、両者はよく整合している。

(2) 中間支持が有る場合の解析結果比較

表5-4は、中間支持材がある場合(ケース1とケース3) の懸垂線理論式と梁理論による解析結果を示している。 同表から明らかなように、フェイルサポートの張力とた わみは、懸垂線理論の方が梁理論よりも2~3割程度大 きいが、中間支持材の鉛直力は、梁理論の方が1割程度 大きい結果となっている。

フェイルサポートの材軸に沿ったたわみ分布を図5-2 に示す。懸垂線理論式のたわみ分布は支点間距離(*l*=5.9m)の中央で最大となっているため、中間支持材に 生じる鉛直力は、支点間距離分の等分布荷重の合計 (*W*=*q*×*l*=*w*×*b*×*l*)となる。

k. 7.4	端部張力P (kN)			中央たわみ δ (mm)				
クース石	①懸垂線式	②梁理論	比 (2/1)	③懸垂線式	④梁理論	比(④/③)		
1	17.8	12.0	0.674	56.7	46.8	0.825		
3	24.2	17.8	0.736	66.2	57.2	0.864		
k 70		中間支持材鉛直力P(kN)						
クロス石	5懸垂	線式	⑥梁玛	là	比 (⑥/⑤)			
1	1.3	7	1.55		1.13			
3	2.17		2.42		1.11			
226375								

表 5-4 懸垂線理論式と梁理論解析結果の比較 (中間支持材有り)

一方、梁理論のたわみ分布は、全般的に懸垂線理論式 のたわみ分布よりも小さいが、その最大値は支点間距離の 中央から0.32~0.4m程度外端側へ寄った位置で生じてい る。中間支持材に生じる鉛直力はたわみの最大位置間の等 分布荷重を負担するため、梁理論では懸垂線理論式よりも 1.11~1.13程度大きい等分布荷重を負担することになる。

以上から、中間支持が有る場合のフェイルサポートの 張力とたわみについては、懸垂線理論式による計算結果 が梁理論式による結果よりも2~3割程度大きく、安全 側の評価となる。ただし、中間支持材の鉛直力は、梁理 論式による計算結果が懸垂線理論式による結果よりも1 割程度大きいため、中間支持材の設計では、安全側に判 断して懸垂線理論式による荷重に対して1.2倍程度の余 裕を持たせた断面設計を行うものとする。

5.2 天井落下実験に関する解析

5.2.1 天井落下実験結果の張力とたわみ

「天井落下実験(フェイルサポート工法)」におけるフ ェイルサポートの張力とたわみ、ならびに中間支持材の 鉛直力の計測結果を表5-5に示す。落下後の平衡状態で は、落下衝撃時の最大値に対して張力が2~3割程度に、 たわみが7~9割程度に減少している。また、中間支持 材の鉛直力は、落下衝撃時の最大値に対して4~5割程 度に減少している。一方、表5-6は、懸垂線理論による 計算結果および表4-12で示した衝撃割増係数を天井重 量に対する計算値に乗じた計算結果を示している。

天井脱落時の落下衝撃に対するフェイルサポートの張 力とたわみ、ならびに中間支持材の鉛直力は、計算値が

試	落下衝撃時の最大値			落下後の平衡状態				
験	フェイルサポート		フェイルサポート 中間支持材		中間支持材	フェイルサポート		中間支持材
体	張力 (kN)	たわみ (mm)	鉛直力 (kN)	張力 (kN)	たわみ (mm)	鉛直力 (kN)		
1	11.9	121	3.4	2.9	108	1.6		
2	42.8	362	-	11.2	306	-		
3	21.2	134	5.7	6.8	115	2.3		
(5)	62.7	459	-	17.0	325	-		

表 5-5 天井落下実験の結果一覧

表 5-6 懸垂線理論による計算結果一覧

試	天井	重量に対す	る計算値	左記の計算値×衝撃割増係数			
験	フェイルサポート		中間支持材	フェイルサポート		中間支持材	
体	張力	たわみ	鉛直力	張力	たわみ	鉛直力	
	(kN) (mm)		(kN)	(kN) (mm)		(kN)	
1	17.8	57	1.37	17.8	142	4.1	
2	28.3	143	-	56.6	427	-	
3	24.2	66	2.17	24.2	166	6.5	
5	38.4	167	-	76.8	500	-	

実験値よりも大きく、安全側の評価となっている。また、 天井重量に対するフェイルサポートの張力の計算値は、 天井脱落後の平衡状態における張力の実験値よりも大き く、安全側の評価となっている。

5.2.2 フェイルサポートの張力とたわみの動的解析 (1) 解析モデル

天井落下実験におけるフェイルサポートの張力とたわ みを解析的に検討する。すなわち、動的解析モデルは 「5.1.2梁理論による解析」に示す梁要素と接合部の要素 を組み合わせたものとする。動的解析モデルを図5-3に 示す。接合部の要素は、梁要素と同じ曲げ剛性を有し、 軸剛性は図5-4のスケルトンモデルとする。ただし、ス ケルトンモデルは、減力時も加力時と同じ経路を辿るも のとし、ループは描かないものとする。天井重量は、各 節点に質量を与えた上で、ある時刻で生起するステップ 関数で重力加速度を入力することにより、天井落下衝撃 を模擬する。粘性減衰定数は、初期剛性比例型とし、天 井落下後の減衰包絡線の実験結果からh=0.07と仮定し た。以上の条件に基づいて、動的応答解析を行った。 (2) 解析結果

各試験体の実験結果と解析結果を比較して表5-7に示す。 また、各試験体の実験結果と解析結果の時刻歴を比較 して図5-5~図5-8に示す。なお、表ならびに図のcase1、2、 3、5はそれぞれ試験体①、②、③、⑤に対応している。 表5-7 に示すように、天井落下時の最大値における実験結 果/解析結果の比は、フェイルサポートの張力が0.87~

図 5-4 接合部の荷重 - 変形関係のスケルトン

表 5-7 実験結果と解析結果の比較

			フェイル	中間支持材			
解析ケース		端部張フ	ל (kN)	スパン中央た	こわみ(mm)	鉛直力	
		最大值	平衡状態	最大値	平衡状態	最大値	平衡状態
	実験結果	11.9	2.9	121	108	3.40	1.62
case1	解析結果	12.2	2.5	110.4	92.6	2.90	1.65
	比	1.03	0.87	0.91	0.86	0.85	1.02
	実験結果	42.8	11.2	362	306		
case2	解析結果	37.1	11.8	346.6	323.7		
	比	0.87	1.05	0.96	1.06		
	実験結果	21.2	6.8	134	115	5.70	2.30
case3	解析結果	20.8	6.2	139	106	5.10	2.52
	比	0.98	0.91	1.04	0.92	0.89	1.10
Case5	実験結果	62.7	17.0	459	325		
	解析結果	70.9	18.5	405	329		
	比	1.13	1.09	0.88	1.01		

1.13、たわみが0.88~1.04、中間支持材の鉛直力が0.85~ 0.89であり、解析結果は実験結果と良い整合を示している。 また、図5-5~図5-8に示すように、解析結果の時刻歴は、 実験時の挙動を概ね再現できていることを確認した。

6. まとめ

グリッドサポート工法・フェイルサポート工法の性能 確認を目的とした各種実験および解析を行い、以下の知 見を得た。

- (1) サポート材(溝形鋼)の中間接合部の試験、天井 の落下防止ネット定着部の試験を行い、構成材料 が十分な耐力を有することを確認した。
- (2) 構造安全性を検証するための実験として、天井加 振実験(グリッドサポート工法)、天井落下実験(フ ェイルサポート工法)を実施した。天井加振実験 結果より、グリッドサポートのサポート材や接合 部に損傷は生じておらず、2.2Gの水平力に1.5倍の 安全率を考慮した地震力に対する安全性が確認さ れた。また、天井落下実験においては、天井落下 による衝撃割増係数の妥当性を確認した。
- (3) 設計法検証のための解析として、サポート材の張力と たわみを懸垂線理論による計算値と膜張力略算式に よる計算値により算出し、ほぼ一致することを確認した。 また、梁理論による解析結果と実験結果を比較し、妥 当性を確認した。今後は、本工法の傾斜天井への応 用など、適用拡大に向けた取り組みを行う予定である。

12

図 5-6 実験結果と解析結果の時刻歴の比較(case2)

【参考文献】

- 1) 国土交通省 国土技術政策総合研究所, 独立行政法人 建 築研究所, 一般社団法人 新·建築士制度普及協会: 建築 物における天井脱落対策に係る技術基準の解説(平成25年 10月版), 2013.10
- 2) 清水建設株式会社: 天井ボード材に斜め部材を固定する "剛" な耐震天井構工法(リニアブレースR), ビルディングレ ター第612号, 2016年12月
- 3) 国土交通省国土技術政策総合研究所, 独立行政法人 建築研 究所監修: 膜構造の建築物・膜材料等の技術基準及び同解 説(平成15年8月)

図 5-8 実験結果と解析結果の時刻歴の比較(case5)

【執筆者】

(MASATOU Tomohiro)

*2 櫻庭 記彦

*3 松原正芳 (SAKURABA Fumihiko) (MATSUBARA Masayoshi)

*4 諸星 玲子 (MOROHOSHI Reiko)